我要投搞

标签云

收藏小站

爱尚经典语录、名言、句子、散文、日志、唯美图片

当前位置:多盈娱乐注册 > 多处理器 >

cpu是怎么的工作原理

归档日期:09-02       文本归类:多处理器      文章编辑:爱尚语录

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  平整的半导体板上,用激光弄上一些坑坑,然后镶铜,铜连接以后就成电容了,因为本身就是在半导体上面制作的,并且有大概7层这样的,上下连接,就成处理器了,通电以后有一部分早通电,有一部分晚通电,结果就有因果关系了,从通电以后工作原理来说就是楼上这位长篇大论了

  展开全部CPU是Central Processing Unit的缩写,是中央处理器的意思。我们经常听人谈到的486,Pentium就是CPU 。CPU是一个电子元件,其规格就标注在元件上或元件的包装盒上,如i80486DX2-66这行编号就代表了这颗处理器是Intel公司制造的486等级的CPU,它的最高工作频率是66Mhz;又如K6-200的CPU,代表了这颗是AMD公司制造的586MMX级的CPU,它的最高工作频率是200Mhz。

  CPU的工作原理其实很简单,它的内部元件主要包括:控制单元,逻辑单元,存储单元三大部分。指令由控制单元分配到逻辑运算单元,经过加工处理后,再送到存储单元里等待应用程序的使用。

  3、预先存取功能:当程序或资料还没有执行到时,便预先取得并存于CPU内。

  5、多媒体功能:把一些以往由专业多媒体芯片的功能加入CPU。 例如 Intel 的 MMX。

  评判CPU的性能好坏的几个主要参数包括超频、内存总线速度、扩展总线速度、工作电压、地址总线宽度、数据总线宽度、内置协处理器、超标量、L1高速缓存、采用回写。超频:CPU的频率包括主频、外频、倍频。外频即系统总线的工作频率,主频即CPU内部的工作频率:外频=主频×倍频。现在一般的标准外频包括66Mhz 133Mhz 100Mhz。标准的倍频包括:2、2.5、3、3.5、4、4.5、5等。

  “超频”乃是当前众多DIYer们的口头禅,但同时又令许多对电脑了解不多的人感到困惑。下面我就简单为大家介绍一下“超频”。

  “超频”就是强制CPU在高于标称频率的频率下工作,通过提高计算机主频来提高计算机的性能。但现在DIYer们已把超频扩到了更大的领域,除了CPU,AGP卡、PCI介面卡、DRAM甚至于硬盘等都因为CPU外频提升而工作在规格以上的频率,从广义上讲这都叫做超频。

  下面我就先从CPU的超频谈起。提高CPU的工作频率有两种方法:提高倍频系数和提高外部总线频率。

  外部总线MHz,甚至更高。倍频系数就是CPU的工作频率和CPU内部频率的比值,比如3倍频、3. 5倍频等。如赛扬300A的工作频率是300Mhz,其内部频率是66Mhz,倍频数为4.5。那么是否每一个CPU都能超频,超频又需要什么条件呢?一般来说Intel公司生产的CPU的超频性能最好,一般都可以稳定地向上超两个等级;而其他几家的产品超频性则弱的多,有些甚至根本不能超。因为超频会使CPU和电脑的其它部件在超额状态下工作,所以选用质量好的部件是超频成功的关键。

  为了超频,一般来说名牌主板是你最好的选择,如升技的BH6、BX2,技嘉的GBBX2000,华硕的P2B等,他们不仅做工精良,且支持多种外频。名牌主板虽然性能优异,但价格昂贵,如果囊中羞涩,则可选择较便宜的主板,如华基、麒麟等,它们也有不错的超频能力。此外,在选择主板时,最好选择具有软跳线功能的主板。使用软跳线的主板在改变CPU工作频率时就不用在复杂的主板电路上寻觅那些不起眼的跳线了。

  超频的另一瓶颈就是内存,早期的72线EDO内存超频能力一般,最多能上到75Mhz外频,能跑83Mhz外频的少之又少。现在的168线SDRAM内存又分为PC100和非PC100两种。一般来说PC100的要比非PC100的贵几十元。不过为了机器能够稳定地运行在100MHz或更高频率上,PC100内存是必不可少的。PC100内存又有不同的规格,它们的速度不一样。从理论上说,CPU要想稳定地运行在100MHz外频下,内存速度必须是-10以上的。(所谓-10就是指内存的工作周期为10ns,以下同理。)因为1秒除以100M等于10纳秒。同理,你若想使用125MHz外频,则内存速度必须是-8以上的。现在市面上的内存有不少标称自己是-7的,但实际上只有三星的KMXXXSXXXXBT-G7等几个名牌型号才是线ns的,其它的则都是奸商们通过打磨,使10ns的 SDRAM产品披上了7ns的外衣。

  硬盘也是超频路上的一道坎。总的来说,各种硬盘的较新型号都有较强的超频能力,而早期产品则超频性能不佳。在各种硬盘中,笔者向大家推荐昆腾系列硬盘,一直以来昆腾就以较强的超频能力著称于世。尤其是其火球七代和火球八代超频性能更是出众。

  超频成功与否还与其他设备密切相关。在一台计算机中还有各种各样的板卡。它们采用不同的总线接口,如现在流行的AGP显卡。AGP接口的标准频率是66.6MHz,它的工作频率与CPU的外部总线MHz外频时,它的工作频率将会高达88.6MHz,这对AGP显卡来说无疑是一种考验。当使用 PCI卡时,如工作频率达到100MHz,则会使用3分频,既100除以3,等于33.3MHz。所以在133MHz下,PCI卡的工作频率将是44.3MHz,高于标准的33.3MHz达30%,如此苛刻的条件并不是每一种PCI卡都能承受的。

  如果你的电脑配件都能达到上述条件,那么恭喜你,你已经达到了超频的基本条件。但这并不意味着你的超频一定成功。使电脑各部件超负荷运转,必然会产生大量的热。而热则是各种电子部件的大敌,当温度达到80摄氏度,就会发生电子转移现象,从而损坏设备。用手摸摸你的CPU吧,如果它的表面温度已达到了50至60摄氏度,则它的内部温度已经到了80摄氏度,这已经是危险温度了。所以好的降温设备是超频者必不可少的。

  一个完整的微型计算机系统包括硬件系统和软件系统两大部分。 计算机硬件是指组成一台计算机的各种物理装置, 它们是由各种实在的器件所组成,是计算机进行工作的物质基础。计算机硬件系统中最重要的组成部分是中央处理器(CPU ) 。

  中央处理器简称CPU(Central Processing Unit),它是计算机系统的核心,主要包括运算器和控制器两个部件。如果把计算机比作一个人,那么CPU就是心脏,其重要作用由此可见一斑。CPU的内部结构可以分为控制单元、逻辑单元和存储单元三大部分,三个部分相互协调,便可以进行分析,判断、运算并控制计算机各部分协调工作。

  计算机发生的所有动作都是受CPU控制的。其中运算器主要完成各种算术运算(如加、减、乘、除)和逻辑运算( 如逻辑加、逻辑乘和非运算); 而控制器不具有运算功能,它只是读取各种指令,并对指令进行分析,作出相应的控制。通常,在CPU中还有若干个寄存器,它们可直接参与运算并存放运算的中间结果。

  我们常说的CPU都是X86系列及兼容CPU ,所谓X86指令集是美国Intel公司为其第一块16位CP U(i8086)专门开发的,美国IBM公司1981年推出的世界第一台PC机中的CPU— i8088(i8086 简化版)使用的也是X86指令,同时电脑中为提高浮点数据处理能力而增加的X87芯片系列数学协处理器则另外使用X8 7指令,以后就将X86指令集和X87指令集统称为X86指令集。虽然随着CPU技术的不断发展,Intel陆续研制出更新型的i80386、i80486直到今天的Pentium Ⅲ系列,但为了保证电脑能继续运行以往开发的各类应用程序以保护和继承丰富的软件资源,Intel公司所生产的所有CPU仍然继续使用X86指令集。 另外除Intel 公司之外,AMD和Cyrix等厂家也相继生产出能使用X86指令集的CPU,由于这些CPU能运行所有的为Inte l CPU所开发的各种软件,所以电脑业内人士就将这些CPU列为Intel的CPU兼容产品。由于Intel X8 6系列及其兼容CPU都使用X86指令集,就形成了今天庞大的X86系列及兼容CPU阵容。

  CPU品质的高低直接决定了一个计算机系统的档次,而 CPU的主要技术特性可以反映出CPU的大致性能。

  CPU可以同时处理的二进制数据的位数是其最重要的一个品质标志。人们通常所说的16位机、32位机就是指该微机中的C PU可以同时处理16位、32位的二进制数据。早期有代表性的IBM PC/XT、IBM PC/AT与 286机是16位机,386机和486机是32位机,586机则是64位的高档微机。

  CPU按照其处理信息的字长可以分为:八位微处理器、十六位微处理器、三十二位微处理器以及六十四位微处理器等。

  位:在数字电路和电脑技术中采用二进制,代码只有“0”和“1”,其中无论是 “0”或是“1”在CPU中都是一“位”。

  字节和字长:电脑技术中对CPU在单位时间内(同一时间)能一次处理的二进制数的位数叫字长。所以能处理字长为8位数据的CPU通常就叫8位的CPU。同理32位的CPU就能在单位时间内处理字长为32位的二进制数据。由于常用的英文字符用8位二进制就可以表示,所以通常就将8位称为一个字节。字节的长度是不固定的,对于不同的CPU、字长的长度也不一样。8位的CPU一次只能处理一个宇节,而32位的CPU一次就能处理4个宇节,同理字长为64位的 C PU一次可以处理8个字节。

  CPU外频也就是常见特性表中所列的CPU总线频率,是由主板为CPU提供的基准时钟频率,而CPU的工作主频则按倍频系数乘以外频而来。在Pentium时代, CPU的外频一般是60/66MHz,从Pentium II 350开始,CPU外频提高到1O0MHz。由于正常情况下CPU总线频率和内存总线频率相同,所以当CPU外频提高后,与内存之间的交换速度也相应得到了提高,对提高电脑整体运行速度影响较大。

  前端总线也就是以前所说的CPU总线,由于在目前的各种主板上前端总线频率与内存总线频率相同,所以也是 CPU与内存以及L2 Cache(仅指Socket 7主板)之间交换数据的工作时钟。由于数据传输最大带宽取决所同时传输的数据位宽度和传输频率,即数据带宽=(总线。例如Intel公司的PⅡ 333使用6 6MHz的前端总线,所以它与内存之间的数据交换带宽为528MB/s =(66×64)/8,而其PⅡ 350则使用100MHz的前端总线,所以其数据交换峰值带宽为800MB/s=(100×64)/8。由此可见前端总线速率将影响电脑运行时CPU与内存、(L2 Cache)之间的数据交换速度,实际也就影响了电脑的整体运行速度。因此目前 Intel正开始将其P Ⅲ的前端总线MHz过渡。 AMD公司新推出的K7虽然使用20 0MHz的前端总线 CPU内核与内存之间数据交换时钟仍然是100MHz,主频也是以100 MHz为基频倍频的。

  CPU主频也叫工作频率,是CPU内核(整数和浮点运算器)电路的实际运行频率。在486 DX2 CPU之前。CPU的主频与外频相等。从486DX2开始,基本上所有的CPU主频都等于“外频乘上倍频系数”了。CPU的主要技术特征 。主频是CPU内核运行时的时钟频率,主频的高低直接影响CPU的运算速度。

  我们知道仅Pentium就可以在一个时钟周期内执行两条运算指令,假如主频为100MHz的Penti um可以在1秒钟内执行2亿条指令,那么主频为200MHz的Pentium每秒钟就能执行4亿条指令,因此CPU主频越高,电脑运行速度就越快。

  需要说明的是Cyrix的CPU对主频这项指标是采用PR性能等级参数(Performance Rat ing)来标称的,表示此时CPU性能相当于Intel某主频CPU的性能。用PR参数标称的CPU实际运行时钟频率与标称主频并不一致。例如MⅡ-300的实际运行频率为233MHz(66×3.5),但PR参数主频标为300MH z,意思就是MⅡ-300相当于Intel的PⅡ-300。不过事实上也仅是MⅡ-300的Business Win ston指标(整数性能)能与PⅡ-300相当而已。

  L1和L2 Cache的容量和工作速率对提高电脑速度起关键作用,尤其是L2 Cache对提高运行2 D图形处理较多的商业软件速度有显著作用。

  设置L2 Cache是486时代开始的,目的是弥补L1 Cache(一级高速缓存)容量的不足,以最大程度地减小主内存对CPU运行造成的延缓。

  CPU的L2 Cache分芯片内部和外部两种。设在CPU芯片内的L2 Cache运行速度与主频相同,而采用PⅡ方式安装在CPU芯片外部的L2 Cache运行频率一般为主频的二分之一,因此其效率要比芯片内的L2 Cache要低,这就是赛扬只有128KB片内Cache但性能却几乎超过同主频P Ⅱ(有512KB但工作时钟为主频一半的片外L2Cache)的重要原因。

  流水线(pipeline)是 InteI首次在486芯片中开始使用的。流水线的工作方式就象工业生产上的装配流水线个不同功能的电路单元组成一条指令处理流水线步后再由这些电路单元分别执行,这样就能实现在一个CPU时钟周期完成一条指令,因此提高CPU的运算速度。由于486CP U只有一条流水线,通过流水线中取指令、译码、产生地址、执行指令和数据写回五个电路单元分别同时执行那些已经分成五步的指令,因此实现了486CPU设计人员预期的在每个时钟周期中完成一条指令的目的(按笔者看法,CPU实际上应该是从第五个时钟周期才达到每周期能完成一条指令的处理速度)。到了Pentium时代、设计人员在CPU中设置了两条具有各自独立电路单元的流水线,因此这样CPU在工作时就可以通过这两条流水线来同时执行两条指令,因此在理论上可以实现在每一个时钟周期中完成两条指令的目的。

  超流水线是指某些CPU内部的流水线步以上,例如Pentium pro的流水线 步。将流水线设计的步(级)数越多,其完成一条指令的速度越快,因此才能适应工作主频更高的CPU。超标量(supe rscalar)是指在 CPU中有一条以上的流水线,并且每时钟周期内可以完成一条以上的指令,这种设计就叫超标量技术。

  乱序执行(out-of-orderexecution)是指CPU采用了允许将多条指令不按程序规定的顺序分开发送给各相应电路单元处理的技术。比方说程序某一段有7条指令,此时CPU将根据各单元电路的空闹状态和各指令能否提前执行的具体情况分析后,将能提前执行的指令立即发送给相应电路执行。当然在各单元不按规定顺序执行完指令后还必须由相应电路再将运算结果重新按原来程序指定的指令顺序排列后才能返回程序。这种将各条指令不按顺序拆散后执行的运行方式就叫乱序执行(也有叫错序执行)技术。采用乱序执行技术的目的是为了使CPU内部电路满负荷运转并相应提高了CP U的运行程序的速度。

  分枝预测(branch prediction)和推测执行(speculatlon execution) 是CPU动态执行技术中的主要内容,动态执行是目前CPU主要采用的先进技术之一。采用分枝预测和动态执行的主要目的是为了提高CPU的运算速度。推测执行是依托于分枝预测基础上的,在分枝预测程序是否分枝后所进行的处理也就是推测执行。

  自最简单的计算机开始,指令序列便能取得运算对象,并对它们执行计算。对大多数计算机而言,这些指令同时只能执行一次计算。如需完成一些并行操作,就要连续执行多次计算。此类计算机采用的是“单指令单数据”(SISD)处理器。在介绍CPU性能中还经常提到“扩展指令”或“特殊扩展”一说,这都是指该CPU是否具有对X86指令集进行指令扩展而言。扩展指令中最早出现的是InteI公司自己的“MMX”,其次是AMD公司的“3D Now!”,最后是最近的Pentium III中的“SSE”。

  MMX和SSE:MMX是英语“多媒体指令集”的缩写。共有57条指令,是Intel公司第一次对自1985 年就定型的 X86指令集进行的扩展。MMX主要用于增强CPU对多媒体信息的处理,提高CPU处理3D图形、视频和音频信息能力。但由于只对整数运算进行了优化而没有加强浮点方面的运算能力。所以在3D图形日趋广泛,因特网3D网页应用日趋增多的情况下,MMX已心有余而力不足了。MMX指令可对整数执行SIMD运算,比如-40、0、1、469 或32766等等;SSE指令则增加了对浮点数的SIMD运算能力,比如-40.2337,1.4355或87734 3226.012等等。利用MMX和SSE,一条指令可对2个以上的数据流执行计算。就前面的例子来说,再也不必每秒执行529000条指令了,只需执行264600条即可。因为同样的指令可同时对左、右声道发生作用。显示时,每秒也不需要70778880条指令,只需23592960条,因为红、绿、蓝通道均可用相同的指令控制。

  SSE:SSE是英语“因特网数据流单指令序列扩展/Internet Streaming SIMDExt ensions”的缩写。它是InteI公司首次应用于 Pentium III中的。实际就是原来传闻的MMX2以后来又叫KNI(Katmai NewInstruction), Katmai实际上也就是现在的Pentium III。SSE共有70条指令,不但涵括了原MMX和3D Now!指令集中的所有功能,而且特别加强了SIMD浮点处理能力,另外还专门针对目前因特网的日益发展,加强了CPU处理3D网页和其它音、象信息技术处理的能力。CPU具有特殊扩展指令集后还必须在应用程序的相应支持下才能发挥作用,因此,当目前最先进的Penthm III 450和 Pentium II 450运行同样没有扩展指令支持的应用程序时,它们之间的速度区别并不大。

  SSE除保持原有的MMX指令外,又新增了70条指令,在加快浮点运算的同时,也改善了内存的使用效率,使内存速度显得更快一些。对游戏性能的改善十分显著,按Intel的说法,SSE对下述几个领域的影响特别明显:3D几何运算及动画处理;图形处理(如Photoshop);视频编辑/压缩/解压(如MPEG和DVD);语音识别;以及声音压缩和合成等。

  3D NOW!:AMD公司开发的多媒体扩展指令集,共有27条指令,针对MMX指令集没有加强浮点处理能力的弱点,重点提高了AMD公司K6系列CPU对3D图形的处理能力,但由于指令有限,该指令集主要应用于3D游戏,而对其他商业图形应用处理支持不足。

  表明CPU性能的参数中常有“工艺技术”一项,其中有“0.35um”或“0.25um”等。一般来说“工艺技术”中的数据越小表明CPU生产技术越先进。目前生产CPU主要采用CMOS技术。CMOS是英语“互补金属氧化物半导体”的缩写。采用这种技术生产CPU时过程中采用“光刀”加工各种电路和元器件,并采用金属铝沉淀在硅材料上后用 “光刀”刻成导线联接各元器件。现在光刻的精度一般用微米(um)表示,精度越高表示生产工艺越先进。因为精度越高则可以在同样体积上的硅材料上生产出更多的元件,所加工出的联接线也越细,这样生产出的CPU工作主频可以做得很高。正因为如此,在只能使用0.65 u m工艺时生产的第一代Pentium CPU的工作主频只有60/66MHz,在随后生产工艺逐渐发展到0.35um、0.25um时、所以也相应生产出了工作主额高达266MHz的Pentium MMX和主频高达500MHz的Pentium II CPU。由于目前科学技术的限制,现在的CPU生产工艺只能达到0.25 u m,因此Intel、AMD、 Cyrix以及其它公司正在向0.18um和铜导线(用金属铜沉淀在硅材料上代替原来的铝)技术努力,估计只要生产工艺达到0.18um后生产出主频为l000MHz的CPU就会是很平常的事了。

  AMD为了跟Intel继续争夺下个世纪的微处理器发展权,已经跟摩托罗拉(Motorola)达成一项长达七年的技术合作协议。Motorola将把最新开发的铜导线工艺技术(Copper Interconnect) 授权给AMD。AMD准备在2000年之内,制造高达1000MHz(1GHz)的K7微处理器。CPU将向速度更快、64位结构方向前进。CPU的制作工艺将更加精细,将会由现在0.25微米向0.18微米过渡,到2000年中大部分CPU厂商都将采用0.18微米工艺,2001年之后,许多厂商都将转向0.13微米的铜制造工艺,制造工艺的提高,味着体积更小,集成度更高,耗电更少。铜技术的优势非常明显。主要表现在以下方面:铜的导电性能优于现在普遍应用的铝,而且铜的电阻小,发热量小,从而 可以保证处理器在更大范围内的可靠性;采用0.13微米以下及铜工艺芯片制造技术将有效的提高芯片的工作频率;能减小现有管芯的 体积。与传统的铝工艺技术相比,铜工艺制造芯片技术将有效地提高芯片的速度,减小芯片的面积,从发展来看铜工艺将最终取代铝工艺。

  各厂家所生产的每一种CPU都有名称(商标名)、代号(研制代号)和标志(专用图案)。其中In tel公司的早期产品以i80x86命名,即以前的286、386、486等,到Intel开发出第5代产品586时由于商标注册上的麻烦改为Pentium并同时为其注册中文商标名“奔腾”,由此也就有了后来的Pentium Pr o(高能奔腾)、Pentium Ⅱ(奔腾2代)、Pentium Ⅲ(奔腾3代)以及Celeron(赛扬),目前名称并不能反映出同类型中CPU的规格,这点将从Intel正式推出前端总线MHz的PⅢ后开始改进,以后只要看见CPU的名称就可以了解这块CPU的大致技术特性。

  另外厂家对每一种CPU包括同名但技术规格不同的产品都另有一个研制代号,例如Intel公司使用0.3 5和0.25工艺生产的PⅡ就各有一个代号分别为:Klamath和Destrutes。同时Itel每一种名称的C PU都有还一个专用商标图案作为标志。AMD和Cyrix公司的情况与Intel相近,它们的每一种CPU也都有一个名称、代号和标志,但都还没有正式的中文名称。

  当前我们使用的CPU内部结构实际可分为单总线和双总线两种结构,由于CPU内部结构特征决定CPU的封装形式和安装规范,所以在此作些简单的介绍。

  在Intel公司研制出Pentium Pro之前, 各种486以上CPU,如经典Pentium内部由主处理器、数学协处理器、控制器、各种寄存器和L1 Cache组成。至今为止仍然有大量的CPU继续以这种内部结构模式进行生产,例如AMD的K6-2、Cyrix的MⅡ以及IDT-C6等CPU。从P6(Pen-tium Pr o的研制代号)起,Intel为进一步提高CPU与L2 Cache间的数据交换速度,将原来设置在电脑主板上的高速缓存控制电路和L2 Cache(二级高速缓存)采用在同一块硅材料上制作的方法集成到CPU芯片上,这样CPU内核与高速缓存之间的数据交换就无需经过外部总线而直接通过CPU内部的缓存总线进行,由于CPU内核与内存和CPU与高速缓存之间的数据交换通道分离而形成首创的P6双总线)。从Pentium Pro 的实际应用效果看这一技术措施非常成功,是CPU研制技术上的一次重大改进。由于P6双总线结构的优越性,因此凡是内部具有L2 C ache 和高速缓存控制器的CPU都由传统的单总线模式过渡到双总线模式,例如Intel公司的P Ⅱ、新赛扬和P Ⅲ;AMD公司的K6-Ⅲ和K7等。

  CPU架构是按CPU的安装插座类型和规格确定的。目前常用的CPU按其安装插座规范可分为Socket x和Slotx两大架构。

  封装是CPU生产过程中的最后一道工序,封装是采用特定的材料将CPU芯片或CPU模块固化在其中以防损坏的保护措施,一般必须在封装后CPU才能交付用户使用。

  CPU的封装方式取决于CPU安装形式和器件集成设计,通常采用Socket插座进行安装的CPU只能使用PGA(栅格阵列)方式封装,而采用Slot x槽安装的CPU则全部采用SEC(单边接插盒)的形式封装。 目前采用PGA封装的CPU主要有Intel公司的赛扬,AMD的K6-2、K6-Ⅲ和Cyrix公司的MⅡ,以前赛扬曾采用SEC封装,现已逐渐全部改用PGA封装(见图4)。采用SEC封装的CPU有Intel的PⅡ、PⅢ和AM D公司的K7。其中Intel的Slot架构CPU实际上分别使用SEPP、SECC和SECC2三种单边接插盒进行封装。

  以上CPU中虽然赛扬和K6-Ⅲ内部分别集成了128KB和256KB的L2 Cache和高速缓存控制器,但由于它们是采用在同一片硅材料上一次制造出CPU内核和L2 Cache、高速缓存控制器的方法制造,所以它们的体积较小并能采用PGA方式进行封装。不过赛扬采用PGA封装的主要原因是降低生产成本,而K6-Ⅲ采用PGA封装的主要原因则是因为Intel对其开发的Slot 1、Slot 2和Socket 370插座进行专利保护,所以A MD只能沿用Socket 7架构和采用PGA封装方式生产K6-Ⅲ。

  目前Slot架构的CPU有两种制造方法,一是将分别制造的CPU内核芯片、高速Cache控制器芯片和 L2 Cache芯片安装在一块PCB(电路板)上,然后再安装上单边接插盒和风扇以完成CPU的最终制作。采用这类结构和方法制作的CPU有Intel的PⅡ、PⅢ和AMD的K7。二是将完整的CPU(内含CPU内核、高速Cach e控制器芯片和L2Cache芯片)芯片安装在电路板上,此时电路板纯粹只起Slot接口的安装作用。最后同样再安装单边接插盒和风扇也就形成完整的CPU。采用这种结构和方法制作的CPU只有Intel公司的部分赛扬。

本文链接:http://cakesbyrita.net/duochuliqi/1273.html